Extensions 1→N→G→Q→1 with N=C22×C10 and Q=D5

Direct product G=N×Q with N=C22×C10 and Q=D5
dρLabelID
D5×C22×C1080D5xC2^2xC10400,219

Semidirect products G=N:Q with N=C22×C10 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C10)⋊1D5 = C10×C5⋊D4φ: D5/C5C2 ⊆ Aut C22×C1040(C2^2xC10):1D5400,190
(C22×C10)⋊2D5 = C2×C527D4φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10):2D5400,200
(C22×C10)⋊3D5 = C23×C5⋊D5φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10):3D5400,220

Non-split extensions G=N.Q with N=C22×C10 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C10).1D5 = C5×C23.D5φ: D5/C5C2 ⊆ Aut C22×C1040(C2^2xC10).1D5400,91
(C22×C10).2D5 = C23.D25φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10).2D5400,19
(C22×C10).3D5 = C22×Dic25φ: D5/C5C2 ⊆ Aut C22×C10400(C2^2xC10).3D5400,43
(C22×C10).4D5 = C2×C25⋊D4φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10).4D5400,44
(C22×C10).5D5 = C23×D25φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10).5D5400,54
(C22×C10).6D5 = C10211C4φ: D5/C5C2 ⊆ Aut C22×C10200(C2^2xC10).6D5400,107
(C22×C10).7D5 = C22×C526C4φ: D5/C5C2 ⊆ Aut C22×C10400(C2^2xC10).7D5400,199
(C22×C10).8D5 = Dic5×C2×C10central extension (φ=1)80(C2^2xC10).8D5400,189

׿
×
𝔽